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Abstract-Certain cross-sectional resonances of a long, solid, cylindrical rod, excited by transverse,
elastic impact loading, may be measured by an experimental technique. The values of these resonance
frequencies can be predicted knowing the material characteristics of the rod, but it is of greater
interest to inversely solve for the material characteristics of the tested material from the exper­
imentally obtained frequency values. In the case of portland cement concrete testing specifically,
the bulk shear wave velocity of the material is important to know but difficult to measure. In this
paper, the governing resonance equation will be manipulated and inverted, ultimately resulting in
an expression of bulk shear wave velocity in terms of the nth ordered resonance frequency, Poisson's
ratio, and cross-sectional solid rod radius. The operation is not tractable when performed symboli­
cally, however. because of the presence of Bessel functions; therefore, this novel inversion will be
achieved through the approximation of Bessel functions within the resonance equation with 2nd
order Taylor series, resulting in a quadratic equation in normalized resonance frequency n. The
roots of the quadratic equation may then be solved explicitly, resulting in two symbolic expressions
for n, one of which is selected as the appropriate approximation. Manipulation of the selected root
expression results in the desired symbolic expression for bulk shear wave velocity. With numerical
examples from the literature, it is demonstrated that use of the series provides good approximation
of the roots of the original resonance equation across a significant span of coefficient values and
allows for sufficient inverse calculation of bulk shear wave velocity based on experimental results.
The symbolic form of the inverted expression for bulk shear wave velocity is given in the Appendix.
Copyright £: 1996 Elsevier Science Ltd.

INTRODUCTION

Experimental and analytical studies concerning the transient behavior of beam-like struc­
tures subjected to dynamic loading have been undertaken for decades [Goldsmith and
Cunningham (1956), Jones (1964)]. In these early analytical studies, simplifying approxi­
mations, such as the stationary phase approximation, were used in order to enable the
calculation of the dynamic behavior, A more comprehensive and physically-based approach
for such responses was developed by Flax et al., and expanded by others, where the transient
response of long, solid, cylindrical rods immersed in water and subjected to normally and
obliquely incident ultrasonic plane waves was extensively examined [Flax et af. (1981),
Maze et aI, (1985), Boa et al. (1990)]. In these studies, it was found that the transient
response of the submerged structure involves the superposition of excited cross-sectional
resonance modes of the structure. In a recent study, the transient response of traction-free
(in vacuum) long, solid, cylindrical structures subjected to transverse elastic impact point
loading was empirically demonstrated also to be comprised of the superposition of measur­
able cross-sectional resonance modes [Lin and Sansalone (1992)], and an exact model for
the prediction of the frequency value of these specific resonance modes, based on elastic
guided wave theory, was subsequently proposed [Popovics (1994)].
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From this elastic guided wave model, the frequency value of these resonance modes
may be shown to be a function of the bulk wave velocities-VL and Vs-and the radial
size-a of the solid, elastic rod: thus, the excited resonant frequencies may be easily
predicted for a given solid rod structure subjected to an elastic impact. However, there are
no published approaches which permit the converse calculation: the determination of the
rod parameters upon symbolic inversion and manipulation of the resonance frequency
equation, resulting in an expression for VL or V, in terms of the nth ordered resonance
frequency, Poisson's ratio v, and a of the specimen. Through the inversion of the resonance
equation. that task is approached in this paper. Only one of the coupled bulk wave velocities
needs to be determined if v is known since VL may be calculated from Vs, and vice versa:
for an elastic material, Poisson's ratio is related to the bulk wave velocities by [Fung (1965)]

(1)

The motivation for this work stems from the fact that the determination of Vs for
portland cement concrete within structures is of interest, yet that value is difficult to measure
with existing nondestructive test techniques [Swami (\ 971)].

REVIEW OF THEORY

The elastic guided wave based model for the specific resonance frequencies excited by
transverse, elastic impact upon a solid cylindrical rod will now be reviewed. The derivations
of elastic wave propagation in the isotropic, traction-free, cylindrical, solid rod are well
known [Meeker and Meitzler (1964), Smith (1971), Zemanek (1972), Auld (1990)]. In brief,
harmonic wave propagation along the infinite waveguide is assumed and the dynamic
equations of motion and traction-free boundary conditions are satisfied in order to arrive
upon the frequency dispersion relations: these equations relate harmonic frequency (w)
and propagating wavenumber (}') for a specific waveguide. The equation describing the so­
called cutoff frequencies is then obtained by setting }' = 0, wherein w represents the cutoff
frequency in radians. A true cutoff frequency is that which separates propagating from
evanescent modes. Supplementary roots of the cutoff frequency equation exist when com­
plex values of,' are admitted [Zemanek (1972)]. For the purpose of this work however, the
cutoff frequency roots based only on real values of " will suffice.

It has been demonstrated that the lowest valued, non-trivial, plane-strain cutoff modes,
for wave modes of circumferential order n = 2 and greater, of a solid, long, cylindrical rod
are the resonance modes excited by a transverse. elastic impact source [Popovics (1994)].
The integral value of circumferential order n describes the 8 dependence of the out-of-plane
displacements, U" of the modes as u,(r. 8) = F1(r) cos (n8), where F j (r) is also a function of
11, the bulk wave velocities, and the cutoff frequency. Figure I shows the geometry of the solid

Fig. 1. Geometry of the infinite solid cylindrical rod and coordinate system used.
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cylindrical rod structure as well as the coordinate system used. Following the convention of
Gazis (1958), plane-strain modes are those which are comprised of coupled Ur and U8

components. In the classic derivation it can be shown that the frequencies of these plane­
strain modes are a function of VL , Vs, and a of the solid rod being tested: the general cutoff
frequency equation of plane-strain modes for a circular cross-sectioned, solid rod of radius
a is given by

F2(n,~, 0.) = {2(n 2-I)[QJ,,_ 1(0.) -nJ,,(Q)] ~Q2JI/(Q)}[~QJI/_I(~Q) - (n+ I)JI/(~Q)]

~JI/('Q)(n2- 1- (0.2 !2))[(2n 2 +2n -Q2)JI/(Q) - 2QJI/_ 1(0.)] = 0, (2)

where JI/ is an nth order Bessel function of the first kind, ~ = Vs! VL = ~ (1 - 2v) j2( I - v),
and 0. = waf Vs is the normalized cutoff frequency where w is the actual cutoff frequency
in radians [Zenanek (1972)].

APPROACH FOR INVERSION

The resonance frequency values of interest are given by specific roots of the cutoff
frequency equation (eqn (2)). As can be seen, this equation is comprised ofnth and (n - 1)th
ordered Bessel functions of the first kind with arguments that are a function of bulk velocity
ratio and normalized resonance frequency values: JI/(C 0.) and JI/_ 1(C 0.). Only the lowest
valued, non-trivial frequency roots of eqn (2), for n ;::: 2, are of interest. It is thus desirable
to find an expression which relates the normalized resonance frequency value 0. to the other
variables" n for this special root of eqn (2). However, it is not possible to symbolically
invert equations of the form of eqn (2), as desired, since the inverse of the Bessel function
cannot be expressed in terms of known functions. An approach which makes this needed
calculation possible is either to approximate eqn (2) through variational principles or to
replace the JI/(" 0.) and JI/_ 1(~, 0.) terms in eqn (2) with polynomial approximations of the
respective functions. In either case, it is desirable to minimize computational complexity,
since the approximation should be inverted in symbolic form, yet simultaneously maximize
the sufficiency of the approximation.

Considerable work has been done on the use of variational principles for the approxi­
mation of the governing equations of the free vibrations of circular cylinders. This approach
has been proven to be very successful for the estimation of modal frequencies and associated
modal displacement patterns in cylindrical structures; only the numerical solution to an
algebraic eigenvalue problem is ultimately required [Nelson et al. (1971)]. However, this
approach has limited viability when the eigenvalues are to be solved in symbolic form. The
Rayleigh quotient offers a method by which the estimation of an eigenvalue in symbolic
form is possible, but this eigenvalue is generally that which is greatest in absolute value of
the system [Kreyszig (1988)]. In this work, only the lowest valued root of eqn (2) is of
interest. Thus, variational principles, as found in the literature, are not applicable for this
work.

Considering the latter approach, any polynomial approximation of the Bessel functions
should be valid for orders 1-7 and for Bessel function argument values in the range of 1-8
in this case. Accurate polynomial approximations of Bessel functions have been tabulated
[Olver (1972)], but these approximations are not valid in the desired argument range:
specific approximations are given either for the range 0 ~ x ~ 3 or for the range 3 ~ x ~ 00,

where x is the Bessel function argument. Bessel function approximations which make use
of Chebyshev series are valid within the desired argument range of 0 ~ x ~ 8, but
expressions for only the zeroth and first order functions could be found [Clenshaw and
Picken (1966)]. Thus, power series appear to be the only polynomial approximations which
are viable for Bessel function approximation and meet the order and argument range
requirements. Note that power series have been used successfully to approximate Bessel
functions within guided wave frequency equations when the cross-sectional radius of the
solid rod is known to be small [Love (1944)].
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The general power series approximation of the Bessel function of the first kind of order
n near x = 0 is [Hildebrand (1976)]

(~I)k(:,:)2k~"
\ 2

1,,(x) = I --k'(k'+--·)~'-·
k ~ () • . n.

(3)

where the order of the series is defined as 2N +n. Alternatively, the Taylor series approxi­
mation of the Bessel function of the first kind of order n near x = XII' where x" is arbitrary
and the Bessel function is assumed to be regular at x = x". is given as [Hildebrand (1976)
p.122]

(4)

The raised (k) in eqn (4) represents differentiation of order k with respect to x; the order
of the series is defined as N. The derivative of the Bessel function can be expressed as

d/dxJ,,(I1X ) = 1/12[J" I (I).':) -J,,+ I (I1X)] (5)

where 11 is a constant [Hildebrand (1976) p. 149]. When x" = 0, eqns (4) and (5) reduce to
eqn (3). Either eqn (3) or eqns (4) and (5) may be used to represent the Bessel functions
within eqn (2). Once the Bessel functions within eqn (2) are replaced by such polynomial
expressions, the determination of the needed inverse relations becomes tractable, since
symbolic solutions of polynomial equations of fourth order and below are well known.
Thus, the Bessel functions in eqn (2) were replaced with both types of series approximations
and evaluated; the symbolic mathematics manipulation package Mathematica R was used
for all calculations. Both series types were expanded with respect to 0; in either case, the
approximation of eqn (2) may be written in the form

(6)

where the raised (k) now represents differentiation of order k with respect to 0, Oil is an
initial estimate of the desired root, and the order of the series is defined as N. The problem
of approximating a specific root of eqn (2) thus reduces to the concurrence of the deter­
mination of an appropriate series order. the choice of 0", and the selection of a root from
the N possible solutions ofeqn (6). The series parameters 0" and N must therefore be selected
so to strike a balance between sufficient approximation and computational simplicity, and
the selected value of 0" should be generally close to the expected root. However, the use of
nontrivial values of0" leads to significant algebraic complication because of the involvement
of Bessel functions and derivatives of Bessel functions evaluated at Oo-see eqns (4) and
(5)-within the series coefficients. Thus. two prospective values of 0" were chosen in this
paper: 0" = 0 and 0" = 0.455nn/2(. The second Oil value-0.455nnj2(-was chosen as the
point to be expanded about since this expression serves as a rough approximation of the
nth order resonance frequency excited in a solid rod when ( = 0.6125. This expression for
Oil is a manipulated form of the expression, valid for v = 0.20, f;, = 0.455 VL n/4a where f;) is
the predicted cutoff frequency in Hertz [Lin and Sansalone (1992)]. It should be noted that
the validity of the use of/;, itself is highly dependent upon the value of material v; failure
to account for reasonable variations in material v may lead to calculated i, values which
are over 10% in error [Popovics ( 1994)]. Thus, the use of 0

0
itself for the inverse calculation

of V \ is not sufficient.
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Table 1. Exact and series approximations of Q root values of eqn (2) for various circumferential orders n.
~ = 0.6125

11 Exact N=5

Series approx.
about Q" = 0

N= 10 N = 15 N=2

Series approx.
about Q" = 0.455nn/2(

N=3 N=4

2
3
4
5
6
7

2.34444
3.59456
4.67504
5.68733
6.66663
7.62750

2.37803
+
+
+
+
+
+
+
+
+
+

2.34450
3.59584
4.68887
5.84939

+
+
+
+

2.34444
3.59456
4.67506
5.68746
6.66714
7.62838

2.34444
3.59512
4.67504
5.68515
6.62529

2.34444
3.59455
4.67504
5.68733
6.66654
7.62798

2.34444
3.59456
4.67504
5.68735
6.66702
7.63158

~ Complex valued roots.

Ultimately, the appropriate order of the series is that minimum value which provides
sufficient approximation and also results in an expression which can be inverted in symbolic
form. The sufficiency of the various series approximations was tested by comparing the
lowest valued, non-trivial root of eqn (2) with a specific selected root from the approxi­
mation expression (expression (6)) for circumferential orders n = 2-7; the selected approxi­
mation root, of the N possible roots, was that which was purely real and clearly closest in
value to the exact root for C= 0.6125. In all cases, the appropriate approximation root was
determined easily. The so-called exact roots of eqn (2) were actually obtained numerically:
Newton's method of root determination was used with 6-digit precision upon the sub­
stitution of ( and n values in eqn (2). The same method was used to obtain roots of eqn
(6). Since Newton's method was utilized, the direction of root convergence cannot be
predicted. The word "exact" was used to distinguish the actual roots of eqn (2) from the
roots of eqn (6), the series approximation of eqn (2). The results of these trials are presented
in Table 1. In this table. the root values of eqn (2) are compared to the selected roots
of the approximations, utilizing a series expansion about 0

0
= 0 (eqn (3)) and about

0 0 = 0.455nn/2( (eqns (4) and (5) respectively). for a variety of series orders.
Firstly. it is clear from the data in Table 1 that all of the approximations worsen as

the circumferential order n increases. Considering the series about 0 0 = 0, the data in Table
1 show that a 15th order series is needed to approximate the exact normalized frequency
root values of eqn (2) within ±0.00 1 for n orders up to 7. In fact, the 5th and 10th order
power series cannot supply real valued roots for the higher n orders. Although the form of
the series approximation of eqn (2) with 0 0 = 0 is relatively simple and the 15th order
approximation of eqn (2) is quite good. this substitution results in the formation of a 15th
order polynomial in the 0 term (eqn (6)) which eventually needs to be solved. Of course,
polynomials of order higher than 4 cannot be solved symbolically, so the use of the 15th
order power series is not feasible for this purpose. It can be seen, however, that the use of
the series about 0 0 = 0.455nn!2( results in sufficient approximations requiring much lower
series orders. As seen in Table 1, the 2nd. 3rd, and 4th order series supply good approxi­
mations of eqn (2) : specifically, the 3rd order series about 0 0 = 0.455nn/2( approximates
the exact 0 root values within ±0.0006 for n orders 2-7, while the 2nd order series supplies
the same degree of approximation for n orders 2--4. Note that the use of the 2nd order
series results in a quadratic equation in the 0 term as an approximation of eqn (2). The
symbolic solution of quadratic equations is significantly more tractable than that of cubic
or quartic equations: thus, the 2nd order series expansion about 0 0 = 0.455nn/2( was
selected as most appropriate for the purpose of obtaining approximate symbolic expressions
of eqn (2) root values for n orders 2-5. If approximations of the higher circumferential
order modes (n = 6.7, ... ) are needed, the 3rd order series approximation may be used,
resulting in a cubic equation in the Q term. Once the 2nd order series was substituted into
eqn (2) and a quadratic equation in the Q term was obtained, this new equation was then
solved symbolically resulting in two 0 roots in terms of ( and n. Of the two obtained roots,
the one which supplied values clearly closest to those of the exact form of eqn (2), for
::: = 0.6125 and n = 2-5. was selected as the appropriate root. This ultimately results in
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Fig. 2. Comparison of exact and 2nd order series approximation of normalized frequency root
values n of eqn (2) as a function of bulk wave velocity ratio:; for circumferential orders n = 25.

an expression of normalized resonance frequency III terms of bulk velocity ratio and
circumferential order:

(7)

where F,«(, n) is a function of ( and n only.
The drawback of using the series approximation about no = 0.455rrn/2C as seen upon

inspection of eqn (6), is the arithmetic complexity of series coefficients containing multiple
derivatives of Bessel functions evaluated at no = 0.455rrn!2(. A manipulated form of eqn
(7). for n = 2. is presented in the Appendix where the arithmetic complexity is readily seen.
Despite this complexity, the quadratic approximation of the desired roots ofeqn (2) appears
to work quite well and enables behavioral study through parametric variation. Figure 2
shows the excellent agreement between the exact and approximate root values of eqn (2),
for n = 2-5. across a span of ( values. The "exact" values of eqn (2) were numerically
calculated, as described earlier, whereas the approximate values were obtained by simply
evaluating eqn (7) upon substitution of specific values of sand n. It should be noted that
the nature of root approximation (eqn (7)) changes from purely real to complex in the
region of higher n values and lower' values (below' = 0.54 for n = 4 and below' = 0.58
for n = 5), as shown in Fig. 2. When complex values of eqn (7) were encountered, only the
real portion was utilized. Although complex values of eqn (7) were considered undesirable,
Fig. 2 shows that the real portion of these values approximate the exact roots of eqn (2)
fairly well.

Upon simple substitution. the root approximation (eqn (7)) may be expressed as the
resonance frequency (nth order) in terms of the bulk wave velocities. solid rod radius, and
circumferential order:

(8)

where f = w 2rr. The limits of validity of eqn (8) are shown in Fig. 3 for n orders ranging
from 2~-5. Specifically. Fig. 3 shows the excellent agreement between the exact root values
(eqn (2)) and approximate root values (eqn (8)). for n = 2-5. across a span of Vs values.
It is clear. however. that the root approximation worsens as the mode order n increases and
V~ values tend away from the median value shown. Again. the "exact" values in Fig. 3
were numerically calculated as described earlier whereas the approximate values were
obtained by simply evaluating egn (8) upon the substitution of specific values of VL , Vs• n,
and a. Note that the range of values of bulk wave velocity were chosen so to comprehensively
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Fig. 3. Comparison of exact and 2nd order series approximation of resonance frequency values
as a function of shear wave velocity for mode orders n = 2-5. VL = 4000 m/sec (13124 ft/sec).

a = 0.5 m (19.7 inch).

represent the material portland cement concrete. Figure 4 demonstrates the excellent agree­
ment between the exact root values (eqn (2)) and approximate root values (eqn (8)) for a
wide range of solid rod radii and for all mode orders n selected.

Note that analogous approach for the symbolic inversion of resonance frequency
equations for hollow rods may also be developed. The extension of the solid rod formulation
to the hollow rod case is expected to be tractable, except that Bessel functions of the first
and second kind must be considered, and a new, appropriate point about which to expand
the Taylor series must be determined.

NUMERICAL APPLICATION

Now that the validity of using a 2nd order Taylor series to approximate roots of eqn
(2) is established, we can algebraically manipulate eqn (8) to give an expression for Vs in
terms of VL , a, n, and the associated resonance frequency value. It has been demonstrated
that changing Vs with constant VL has roughly one-hundred-fold more of an effect on the

25000
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Fig. 4. Comparison of exact and 2nd order series approximation of resonance frequency values as
a function of solid rod radius for mode orders n = 2-5. VL = 4000 m/sec (13124 ft/sec). Vs = 2450

m/sec (8038 ft/sec). ( = 0.6125.
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resonance frequency values (eqn (2» than changing VL with constant Vs does [Popovics
(1994)]. Considering this. V, should be solved for rather than VL• with VL terms replaced
by an expression comprised of Vs and v following eqn (I) ; this approach has the effect of
minimizing any error propagation in the calculation of bulk wave velocity. This manipu­
lation results in an expression for resonance frequency which is a function of Vs• a. and v.
It is found that eqn (8) then takes the form

f = v 2Fs (n. v) V,
. 2a

(9)

where Fs(n. v) is a function of n and v only. Equation (9) may thus be further manipulated
to give the desired expression for shear wave velocity:

J/ y2af
• s = .F, (n. v)

(10)

Because of arithmetic complexity. the complete form of eqn (10) is presented in the
Appendix only for n = 2. Note that the mathematical form of eqn (10) suggests that Vs is
directly related to both a and the lowest valued resonance frequency for each n, and that!
and a are inversely related. Following from the parametric study presented as Figs 2-4,
resonance frequency values of circumferential mode orders n = 2, n = 3, and n = 4 could
be used with confidence in conjunction with eqn (10); that is, these modes and associated
frequency values could be used in order to obtain redundant estimates of Vs, enabling
significant error reduction and improved confidence in the results, However. v and a of the
rod must be known. As an aside, note that v may also be nondestructively determined by
an approach which is based on the measurement of resonances of the solid rod [Popovics
(1994)]. This approach for v determination will be detailed in a subsequent communication.

An example of redundant Vs calculation. based on experimentally determined res­
onance frequency data from the literature. for a solid portland cement concrete rod with
known a and v, is shown now. The elastic impact generated resonance frequencies of a solid
rod specimen for n = 2-5 are obtained by an experimental technique with a frequency
resolution of 488 Hz. These data are presented in Table 2. Also shown are redundant Vs
estimates. calculated using eqn (10), using the obtained resonance frequencies and knowing
a and v of the test material; eqn (10) was numerically evaluated as before. For the sake of
brevity, the full forms of eqn (10) for n values 3. 4, and 5 are not presented. However, the
value of the Fs(n. v) term used for the calculation of V, with eqn (10), as well as the
calculated velocity values themselves, are also presented in Table 2 for each n value. Note
that the uncertainty of the measured resonance frequencies, due to insufficient experimental
frequency resolution of the data from the literature, results in an uncertainty of calculated
V" Nevertheless. the calculated values of V" using eqn (10). compare very favorably with
the actual values for n = 2-4: the actual Vs values lie within the range of calculated values
for each of these circumferential orders. For the case of n = 5. however. the actual Vs value
lies outside of the range of the calculated estimate. The redundancy of V, estimates proves
to be useful: the average of the calculated values for n = 2-4 is 2411.68 misec which is

Table 2. Companson of calculated redundant V, values (eqn (10)) from exper­
imentally obtained. 11 order resonance frequencies with actual values. a = 0.20 m

(7.9 inch). \' = 0.20

11

Measured resonance
frequency (Hz)- F, (II,\')

Calculated
V, (m/sec)

Actual
V, (m/sec)-

- -~----'- -----------

4400±244
6800±244
9300±244

10700 ± 244

0527686
0.809194
1.05227
1.27963

2358.43 ± DO.8
2376.85 ± 85.3
2499.77±65.6
2365.07±53.9

2449.5
2449.5
2449.5
2449.5

- Data taken from Lin and Sansalone (1992). p. 890.
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closer to the actual value of 2449.5 m/sec than any individual calculated estimate. Thus, the
redundancy of calculated estimates acts to overcome the effect of insufficient experimental
frequency resolution.

CONCLUSIONS

The resonances in an isotropic solid rod excited by elastic impact can be modeled as
cutoff frequencies in an elastic guided wave approach; the governing equation may be
approximated through the use of 2nd order series which substitute for Bessel functions
within the equation. The approximation is shown to be very good for circumferential orders
n = 2-5, across a significant span of coefficient values. This novel approximation allows
for symbolic manipulation of the resonance equation and explicit, symbolic solution for V5

in terms of the nth ordered resonance frequency. v, and a. This relation can be used in
conjunction with experimental data for nondestructive measurement of V s in cylindrical,
solid structures, including those comprised of portland cement concrete, subjected to elastic
impact, as shown. Specifically, measured resonance frequency values of circumferential
mode orders n = 2, n = 3, and n = 4 may be used with the 2nd order Taylor series approxi­
mation to obtain redundant estimates of Vs, enabling significant error reduction and
improved confidence in the results. Caution should be used when estimating V5 in this
manner with the n = 5 mode. especially when ~ < 0.58, since the approximation worsens
as the circumferential order n of the modes increases and the value of ~ decreases. Extension
of this approach to hollow rod structures is tractable.
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APPENDIX

The full form of the inverted, approximated resonance frequency equation, based on 2nd order series
substitution about no = 0.455nn/2(, is presented for circumferential order 1'1 = 2. The expression gives the bulk
shear wave velocity- V,-in terms of the solid rod radius-a- Poisson's ratio-v- and the nth ordered, lowest
valued, plane-strain cutofffrequencY-f In the expressions, Jo represents the nth order Bessel function of the first
kind. For all values of n. the obtained expression has the form

(AI)

The forms of the l1>" l1>" and l1>, terms change for each value of 1'1; these expressions and l1>4 are presented below
for 1'1 = 2.

- 5.509511732757821 10611 J" C·0~~51) 6.98788768712555910'13 JoC·0~~51)
l1>, = + --------------

l1>~ <1>:

5.12472435914360110'" J, C·0~~51) 4.19884905356863710'12 J, C·0~~51)
+-------------

5.67041746078950110 61 ' J, C·02151)

+ . l1>, <1>4 , +982553844492957910611 J,C·0~~51)

5.38785929807347210614 J'C·0~~51) 3.18764819521821710614 J2C·0~~51)
------------- +--------------

3.91834497571783410613 J,(T)

2.16654505926014610614 J3C·0~~51)
+-------------

9.00137261625457210'13 J3C·0~~51)

4.45888349861426910"3 J3(T)

<1>4

3.6345344439992810612 JoC·0~~51)
l1>, = ------------

(
2.02151')

4.7269521104099110 612 J,~

6.8580317197681310612 JoC·0~~51)

(
2.02151)

1.177866719985551810612 J,~

'2.02151'
11725260595699877 10612 J,1--)

\., l1>4 (2.02151)
- --' <1>4 -1437935316661618910613 J,~

5.61888290935580210613 J2C·0~~51) 3.3375827622891731061 ' J,C·0~~51)
+ ----------------

4.45711740987903710 612 J2C·0~~51) 9.13663950287364310612 J3C·0~~51)
-j- + --------------
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2.01359799750291 W" J'C·0~:51)

1.7195227142663461106
'4 JOC·0~:51)

$, = -------------

1.3393156974552397106
'4 J, (T)

7.01262125345739410'11 J,(T)
$4

(
2.02151)

1.74653549444608410614 J o~

(
2.02151)

4.842545029056418106 '1 J,~

1.259486754891021110614 J, (202151\
$4 ) (2.02151)

- $4 -3.74782951308756210614 J,~

1.455011851154226910615 J'C·0~:51)
+ --------------

(
2.02151)

7.98445595787891510614 J,~

and

8.611747199379854 W" J,C·0~:51) 2.191326303413696 W'4 J,C·0~:51)
+ +------------

5.63273423463625 W l4 J'C·0~:51) 2.09544201642234510614 J'C·0~:51)
----$-;------- + ---------c$-4------


